Continuous Active Learning Using Pretrained Transformers

08/15/2022
by   Nima Sadri, et al.
13

Pre-trained and fine-tuned transformer models like BERT and T5 have improved the state of the art in ad-hoc retrieval and question-answering, but not as yet in high-recall information retrieval, where the objective is to retrieve substantially all relevant documents. We investigate whether the use of transformer-based models for reranking and/or featurization can improve the Baseline Model Implementation of the TREC Total Recall Track, which represents the current state of the art for high-recall information retrieval. We also introduce CALBERT, a model that can be used to continuously fine-tune a BERT-based model based on relevance feedback.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro