Construction of optimal Hermitian self-dual codes from unitary matrices

11/24/2019
by   Lin Sok, et al.
0

We provide an algorithm to construct unitary matrices over finite fields. We present various constructions of Hermitian self-dual code by means of unitary matrices, where some of them generalize the quadratic double circulant constructions. Many optimal Hermitian self-dual codes over large finite fields with new parameters are obtained. More precisely MDS or almost MDS Hermitian self-dual codes of lengths up to 18 are constructed over finite fields _q, where q=3^2,4^2,5^2,7^2,8^2,9^2,11^2,13^2,17^2,19^2. Comparisons with classical constructions are made.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro