Consistent Training and Decoding For End-to-end Speech Recognition Using Lattice-free MMI

12/05/2021
by   Jinchuan Tian, et al.
0

Recently, End-to-End (E2E) frameworks have achieved remarkable results on various Automatic Speech Recognition (ASR) tasks. However, Lattice-Free Maximum Mutual Information (LF-MMI), as one of the discriminative training criteria that show superior performance in hybrid ASR systems, is rarely adopted in E2E ASR frameworks. In this work, we propose a novel approach to integrate LF-MMI criterion into E2E ASR frameworks in both training and decoding stages. The proposed approach shows its effectiveness on two of the most widely used E2E frameworks including Attention-Based Encoder-Decoders (AEDs) and Neural Transducers (NTs). Experiments suggest that the introduction of the LF-MMI criterion consistently leads to significant performance improvements on various datasets and different E2E ASR frameworks. The best of our models achieves competitive CER of 4.1% / 4.4% on Aishell-1 dev/test set; we also achieve significant error reduction on Aishell-2 and Librispeech datasets over strong baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro