CondenseNet: An Efficient DenseNet using Learned Group Convolutions

11/25/2017
by   Gao Huang, et al.
0

Deep neural networks are increasingly used on mobile devices, where computational resources are limited. In this paper we develop CondenseNet, a novel network architecture with unprecedented efficiency. It combines dense connectivity between layers with a mechanism to remove unused connections. The dense connectivity facilitates feature re-use in the network, whereas learned group convolutions remove connections between layers for which this feature re-use is superfluous. At test time, our model can be implemented using standard grouped convolutions - allowing for efficient computation in practice. Our experiments demonstrate that CondenseNets are much more efficient than stateof-the-art compact convolutional networks such as MobileNets and ShuffleNets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro