Computing the Difficulty of Critical Bootstrap Percolation Models is NP-hard

09/05/2018
by   Ivailo Hartarsky, et al.
0

Bootstrap percolation is a class of cellular automata with random initial state. Two-dimensional bootstrap percolation models have three universality classes, the most studied being the `critical' one. For this class the scaling of the quantity of greatest interest -- the critical probability -- was determined by Bollobás, Duminil-Copin, Morris and Smith in terms of a combinatorial quantity called `difficulty', so the subject seemed closed up to finding sharper results. In this paper we prove that computing the difficulty of a critical model is NP-hard and exhibit an algorithm to determine it, in contrast with the upcoming result of Balister, Bollobás, Morris and Smith on undecidability in higher dimensions. The proof of NP-hardness is achieved by a reduction to the Set Cover problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro