Computing Optimal Leaf Roots of Chordal Cographs in Linear Time

08/21/2023
by   Van Bang Le, et al.
0

A graph G is a k-leaf power, for an integer k >= 2, if there is a tree T with leaf set V(G) such that, for all vertices x, y in V(G), the edge xy exists in G if and only if the distance between x and y in T is at most k. Such a tree T is called a k-leaf root of G. The computational problem of constructing a k-leaf root for a given graph G and an integer k, if any, is motivated by the challenge from computational biology to reconstruct phylogenetic trees. For fixed k, Lafond [SODA 2022] recently solved this problem in polynomial time. In this paper, we propose to study optimal leaf roots of graphs G, that is, the k-leaf roots of G with minimum k value. Thus, all k'-leaf roots of G satisfy k <= k'. In terms of computational biology, seeking optimal leaf roots is more justified as they yield more probable phylogenetic trees. Lafond's result does not imply polynomial-time computability of optimal leaf roots, because, even for optimal k-leaf roots, k may (exponentially) depend on the size of G. This paper presents a linear-time construction of optimal leaf roots for chordal cographs (also known as trivially perfect graphs). Additionally, it highlights the importance of the parity of the parameter k and provides a deeper insight into the differences between optimal k-leaf roots of even versus odd k. Keywords: k-leaf power, k-leaf root, optimal k-leaf root, trivially perfect leaf power, chordal cograph

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro