Computing elementary functions using multi-prime argument reduction

07/06/2022
by   Fredrik Johansson, et al.
0

We describe an algorithm for arbitrary-precision computation of the elementary functions (exp, log, sin, atan, etc.) which, after a cheap precomputation, gives roughly a factor-two speedup over previous state-of-the-art algorithms at precision from a few thousand bits up to millions of bits. Following an idea of Schönhage, we perform argument reduction using Diophantine combinations of logarithms of primes; our contribution is to use a large set of primes instead of a single pair, aided by a fast algorithm to solve the associated integer relation problem. We also list new, optimized Machin-like formulas for the necessary logarithm and arctangent precomputations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro