Computational Complexity of Synchronization under Sparse Regular Constraints

07/30/2021
by   Stefan Hoffmann, et al.
0

The constrained synchronization problem (CSP) asks for a synchronizing word of a given input automaton contained in a regular set of constraints. It could be viewed as a special case of synchronization of a discrete event system under supervisory control. Here, we study the computational complexity of this problem for the class of sparse regular constraint languages. We give a new characterization of sparse regular sets, which equal the bounded regular sets, and derive a full classification of the computational complexity of CSP for letter-bounded regular constraint languages, which properly contain the strictly bounded regular languages. Then, we introduce strongly self-synchronizing codes and investigate CSP for bounded languages induced by these codes. With our previous result, we deduce a full classification for these languages as well. In both cases, depending on the constraint language, our problem becomes NP-complete or polynomial time solvable.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro