Computational complexity of k-stable matchings

07/07/2023
by   Haris Aziz, et al.
0

We study deviations by a group of agents in the three main types of matching markets: the house allocation, the marriage, and the roommates models. For a given instance, we call a matching k-stable if no other matching exists that is more beneficial to at least k out of the n agents. The concept generalizes the recently studied majority stability. We prove that whereas the verification of k-stability for a given matching is polynomial-time solvable in all three models, the complexity of deciding whether a k-stable matching exists depends on k/n and is characteristic to each model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro