Compositional Stochastic Modeling and Probabilistic Programming

12/03/2012
by   Eric Mjolsness, et al.
0

Probabilistic programming is related to a compositional approach to stochastic modeling by switching from discrete to continuous time dynamics. In continuous time, an operator-algebra semantics is available in which processes proceeding in parallel (and possibly interacting) have summed time-evolution operators. From this foundation, algorithms for simulation, inference and model reduction may be systematically derived. The useful consequences are potentially far-reaching in computational science, machine learning and beyond. Hybrid compositional stochastic modeling/probabilistic programming approaches may also be possible.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro