Complexity of the Infinitary Lambek Calculus with Kleene Star

05/01/2020
by   Stepan Kuznetsov, et al.
0

We consider the Lambek calculus, or non-commutative multiplicative intuitionistic linear logic, extended with iteration, or Kleene star, axiomatised by means of an ω-rule, and prove that the derivability problem in this calculus is Π_1^0-hard. This solves a problem left open by Buszkowski (2007), who obtained the same complexity bound for infinitary action logic, which additionally includes additive conjunction and disjunction. As a by-product, we prove that any context-free language without the empty word can be generated by a Lambek grammar with unique type assignment, without Lambek's non-emptiness restriction imposed (cf. Safiullin 2007).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro