Comparison of DCO-OFDM and M-PAM for LED-Based Communication Systems

06/17/2018
by   Jie Lian, et al.
0

Light-emitting diode (LED)-based communications, such as visible light communications (VLC) and infrared (IR) communications, are candidate techniques to provide short-range and high-speed data transmission. In this paper, M-ary pulse amplitude modulation (M-PAM), used as a high bandwidth efficiency scheme, is compared with an optimized DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) scheme. Considering the bandwidth limit and constrained peak transmitted power characteristics of LEDs, a bit loading algorithm with an optimized modulation index is used for the DCO-OFDM. To reduce the inter-symbol interference caused by LEDs, a waveform design algorithm with a minimum mean squared error (MMSE) equalizer is applied to the M-PAM system. From numerical results, M-PAM with the optimized signal processing can provide a substantially higher data rate than the optimally designed DCO-OFDM for the same performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro