Communication-Efficient Distributionally Robust Decentralized Learning

05/31/2022
by   Matteo Zecchin, et al.
0

Decentralized learning algorithms empower interconnected edge devices to share data and computational resources to collaboratively train a machine learning model without the aid of a central coordinator (e.g. an orchestrating basestation). In the case of heterogeneous data distributions at the network devices, collaboration can yield predictors with unsatisfactory performance for a subset of the devices. For this reason, in this work we consider the formulation of a distributionally robust decentralized learning task and we propose a decentralized single loop gradient descent/ascent algorithm (AD-GDA) to solve the underlying minimax optimization problem. We render our algorithm communication efficient by employing a compressed consensus scheme and we provide convergence guarantees for smooth convex and non-convex loss functions. Finally, we corroborate the theoretical findings with empirical evidence of the ability of the proposed algorithm in providing unbiased predictors over a network of collaborating devices with highly heterogeneous data distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro