Combining Reinforcement Learning and Configuration Checking for Maximum k-plex Problem

06/06/2019
by   Peilin Chen, et al.
0

The Maximum k-plex Problem is an important combinatorial optimization problem with increasingly wide applications. Due to its exponential time complexity, many heuristic methods have been proposed which can return a good-quality solution in a reasonable time. However, most of the heuristic algorithms are memoryless and unable to utilize the experience during the search. Inspired by the multi-armed bandit (MAB) problem in reinforcement learning (RL), we propose a novel perturbation mechanism named BLP, which can learn online to select a good vertex for perturbation when getting stuck in local optima. To our best of knowledge, this is the first attempt to combine local search with RL for the maximum k -plex problem. Besides, we also propose a novel strategy, named Dynamic-threshold Configuration Checking (DTCC), which extends the original Configuration Checking (CC) strategy from two aspects. Based on the BLP and DTCC, we develop a local search algorithm named BDCC and improve it by a hyperheuristic strategy. The experimental result shows that our algorithms dominate on the standard DIMACS and BHOSLIB benchmarks and achieve state-of-the-art performance on massive graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro