Closing the Accuracy Gap in an Event-Based Visual Recognition Task

05/06/2019
by   Bodo Rückauer, et al.
0

Mobile and embedded applications require neural networks-based pattern recognition systems to perform well under a tight computational budget. In contrast to commonly used synchronous, frame-based vision systems and CNNs, asynchronous, spiking neural networks driven by event-based visual input respond with low latency to sparse, salient features in the input, leading to high efficiency at run-time. The discrete nature of the event-based data streams makes direct training of asynchronous neural networks challenging. This paper studies asynchronous spiking neural networks, obtained by conversion from a conventional CNN trained on frame-based data. As an example, we consider a CNN trained to steer a robot to follow a moving target. We identify possible pitfalls of the conversion and demonstrate how the proposed solutions bring the classification accuracy of the asynchronous network to only 3% below the performance of the original synchronous CNN, while requiring 12x fewer computations. While being applied to a simple task, this work is an important step towards low-power, fast, and embedded neural networks-based vision solutions for robotic applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro