Censoring heavy-tail count distributions for parameters estimation with an application to stable distributions

12/22/2022
by   Antonio Di Noia, et al.
0

Some families of count distributions do not have a closed form of the probability mass function and/or finite moments and therefore parameter estimation can not be performed with the classical methods. When the probability generating function of the distribution is available, a new approach based on censoring and moment criterion is introduced, where the original distribution is replaced with that censored by using a Geometric distribution. Consistency and asymptotic normality of the resulting estimators are proven under suitable conditions. The crucial issue of selecting the censoring parameter is addressed by means of a data-driven procedure. Finally, this novel approach is applied to the discrete stable family and the finite sample performance of the estimators is assessed by means of a Monte Carlo simulation study.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro