CDF Transform-Shift: An effective way to deal with inhomogeneous density datasets

10/05/2018
by   Ye Zhu, et al.
0

Many distance-based algorithms exhibit bias towards dense clusters in inhomogeneous datasets (i.e., those which contain clusters in both dense and sparse regions of the space). For example, density-based clustering algorithms tend to join neighbouring dense clusters together into a single group in the presence of a sparse cluster; while distance-based anomaly detectors exhibit difficulty in detecting local anomalies which are close to a dense cluster in datasets also containing sparse clusters. In this paper, we propose the CDF Transform-Shift (CDF-TS) algorithm which is based on a multi-dimensional Cumulative Distribution Function (CDF) transformation. It effectively converts a dataset with clusters of inhomogeneous density to one with clusters of homogeneous density, i.e., the data distribution is converted to one in which all locally low/high-density locations become globally low/high-density locations. Thus, after performing the proposed Transform-Shift, a single global density threshold can be used to separate the data into clusters and their surrounding noise points. Our empirical evaluations show that CDF-TS overcomes the shortcomings of existing density-based clustering and distance-based anomaly detection algorithms and significantly improves their performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro