Calibrating LiDAR and Camera using Semantic Mutual information

04/24/2021
by   Peng Jiang, et al.
0

We propose an algorithm for automatic, targetless, extrinsic calibration of a LiDAR and camera system using semantic information. We achieve this goal by maximizing mutual information (MI) of semantic information between sensors, leveraging a neural network to estimate semantic mutual information, and matrix exponential for calibration computation. Using kernel-based sampling to sample data from camera measurement based on LiDAR projected points, we formulate the problem as a novel differentiable objective function which supports the use of gradient-based optimization methods. We also introduce an initial calibration method using 2D MI-based image registration. Finally, we demonstrate the robustness of our method and quantitatively analyze the accuracy on a synthetic dataset and also evaluate our algorithm qualitatively on KITTI360 and RELLIS-3D benchmark datasets, showing improvement over recent comparable approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro