Bringing Alive Blurred Moments!

04/09/2018
by   Kuldeep Purohit, et al.
0

We present a solution for the novel goal of extracting a video from a single blurred image to sequentially reconstruct the views of a scene as beheld by the camera during the time of exposure. We approach this task by first learning a motion representation for videos in an unsupervised manner through training of a novel video autoencoder network that performs a surrogate task of video reconstruction. Instead of enforc- ing temporal constraints on features learned at the image level, we em- ploy a recurrent design with convolutional filters to directly learn tempo- rally correlated representations. Once trained, this network is employed for the guided training of a motion encoder for blurred images. This net- work extracts embedded motion information from a single blurred image so as to generate a sharp video in conjunction with the trained recur- rent video decoder. Experiments on real scenes and standard data-sets demonstrate our framework's ability to generate a plausible sequence of sharp frames.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro