Brain-Inspired Model for Incremental Learning Using a Few Examples

02/27/2020
by   Ali Ayub, et al.
1

Incremental learning attempts to develop a classifier which learns continuously from a stream of data segregated into different classes. Deep learning approaches suffer from catastrophic forgetting when learning classes incrementally. We propose a novel approach to incremental learning inspired by the concept learning model of the hippocampus that represents each image class as centroids and does not suffer from catastrophic forgetting. Classification of a test image is accomplished using the distance of the test image to the n closest centroids. We further demonstrate that our approach can incrementally learn from only a few examples per class. Evaluations of our approach on three class-incremental learning benchmarks: Caltech-101, CUBS-200-2011 and CIFAR-100 for incremental and few-shot incremental learning depict state-of-the-art results in terms of classification accuracy over all learned classes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro