Boolean approximate counting CSPs with weak conservativity, and implications for ferromagnetic two-spin

04/13/2018
by   Miriam Backens, et al.
0

We analyse the complexity of approximate counting constraint satisfactions problems #CSP(F), where F is a set of nonnegative rational-valued functions of Boolean variables. A complete classification is known in the conservative case, where F is assumed to contain arbitrary unary functions. We strengthen this result by fixing any permissive strictly increasing unary function and any permissive strictly decreasing unary function, and adding only those to F: this is weak conservativity. The resulting classification is employed to characterise the complexity of a wide range of two-spin problems, fully classifying the ferromagnetic case. In a further weakening of conservativity, we also consider what happens if only the pinning functions are assumed to be in F (instead of the two permissive unaries). We show that any set of functions for which pinning is not sufficient to recover the two kinds of permissive unaries must either have a very simple range, or must satisfy a certain monotonicity condition. We exhibit a non-trivial example of a set of functions satisfying the monotonicity condition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro