Blind Image Deblurring based on Kernel Mixture

Blind Image deblurring tries to estimate blurriness and a latent image out of a blurred image. This estimation, as being an ill-posed problem, requires imposing restrictions on the latent image or a blur kernel that represents blurriness. Different from recent studies that impose some priors on the latent image, this paper regulates the structure of the blur kernel. We propose a kernel mixture structure while using the Gaussian kernel as a base kernel. By combining multiple Gaussian kernels structurally enhanced in terms of scales and centers, the kernel mixture becomes capable of modeling nearly non-parametric shape of blurriness. A data-driven decision for the number of base kernels to combine makes the structure even more flexible. We apply this approach to a remote sensing problem to recover images from blurry images of satellite. This case study shows the superiority of the proposed method regulating the blur kernel in comparison with state-of-the-art methods that regulates the latent image.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro