Blending of Learning-based Tracking and Object Detection for Monocular Camera-based Target Following

08/21/2020
by   Pranoy Panda, et al.
0

Deep learning has recently started being applied to visual tracking of generic objects in video streams. For the purposes of robotics applications, it is very important for a target tracker to recover its track if it is lost due to heavy or prolonged occlusions or motion blur of the target. We present a real-time approach which fuses a generic target tracker and object detection module with a target re-identification module. Our work focuses on improving the performance of Convolutional Recurrent Neural Network-based object trackers in cases where the object of interest belongs to the category of familiar objects. Our proposed approach is sufficiently lightweight to track objects at 85-90 FPS while attaining competitive results on challenging benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro