BiLO-CPDP: Bi-Level Programming for Automated Model Discovery in Cross-Project Defect Prediction

08/31/2020
by   Ke Li, et al.
0

Cross-Project Defect Prediction (CPDP), which borrows data from similar projects by combining a transfer learner with a classifier, have emerged as a promising way to predict software defects when the available data about the target project is insufficient. How-ever, developing such a model is challenge because it is difficult to determine the right combination of transfer learner and classifier along with their optimal hyper-parameter settings. In this paper, we propose a tool, dubbedBiLO-CPDP, which is the first of its kind to formulate the automated CPDP model discovery from the perspective of bi-level programming. In particular, the bi-level programming proceeds the optimization with two nested levels in a hierarchical manner. Specifically, the upper-level optimization routine is designed to search for the right combination of transfer learner and classifier while the nested lower-level optimization routine aims to optimize the corresponding hyper-parameter settings.To evaluateBiLO-CPDP, we conduct experiments on 20 projects to compare it with a total of 21 existing CPDP techniques, along with its single-level optimization variant and Auto-Sklearn, a state-of-the-art automated machine learning tool. Empirical results show that BiLO-CPDP champions better prediction performance than all other 21 existing CPDP techniques on 70 overwhelmingly superior to Auto-Sklearn and its single-level optimization variant on all cases. Furthermore, the unique bi-level formalization inBiLO-CPDP also permits to allocate more budget to the upper-level, which significantly boosts the performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro