Bidiagonalization with Parallel Tiled Algorithms

11/18/2016
by   Mathieu Faverge, et al.
0

We consider algorithms for going from a "full" matrix to a condensed "band bidiagonal" form using orthogonal transformations. We use the framework of "algorithms by tiles". Within this framework, we study: (i) the tiled bidiagonalization algorithm BiDiag, which is a tiled version of the standard scalar bidiagonalization algorithm; and (ii) the R-bidiagonalization algorithm R-BiDiag, which is a tiled version of the algorithm which consists in first performing the QR factorization of the initial matrix, then performing the band-bidiagonalization of the R-factor. For both bidiagonalization algorithms BiDiag and R-BiDiag, we use four main types of reduction trees, namely FlatTS, FlatTT, Greedy, and a newly introduced auto-adaptive tree, Auto. We provide a study of critical path lengths for these tiled algorithms, which shows that (i) R-BiDiag has a shorter critical path length than BiDiag for tall and skinny matrices, and (ii) Greedy based schemes are much better than earlier proposed variants with unbounded resources. We provide experiments on a single multicore node, and on a few multicore nodes of a parallel distributed shared-memory system, to show the superiority of the new algorithms on a variety of matrix sizes, matrix shapes and core counts.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro