Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions

06/28/2019
by   Simon Luo, et al.
0

Hierarchical probabilistic models are able to use a large number of parameters to create a model with a high representation power. However, it is well known that increasing the number of parameters also increases the complexity of the model which leads to a bias-variance trade-off. Although it is a classical problem, the bias-variance trade-off between hidden layers and higher-order interactions have not been well studied. In our study, we propose an efficient inference algorithm for the log-linear formulation of the higher-order Boltzmann machine using a combination of Gibbs sampling and annealed importance sampling. We then perform a bias-variance decomposition to study the differences in hidden layers and higher-order interactions. Our results have shown that using hidden layers and higher-order interactions have a comparable error with a similar order of magnitude and using higher-order interactions produce less variance for smaller sample size.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro