Benchmarking the Hooke-Jeeves Method, MTS-LS1, and BSrr on the Large-scale BBOB Function Set

04/28/2022
by   Ryoji Tanabe, et al.
0

This paper investigates the performance of three black-box optimizers exploiting separability on the 24 large-scale BBOB functions, including the Hooke-Jeeves method, MTS-LS1, and BSrr. Although BSrr was not specially designed for large-scale optimization, the results show that BSrr has a state-of-the-art performance on the five separable large-scale BBOB functions. The results show that the asymmetry significantly influences the performance of MTS-LS1. The results also show that the Hooke-Jeeves method performs better than MTS-LS1 on unimodal separable BBOB functions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro