Bayesian Optimization with Uncertain Preferences over Attributes

11/14/2019
by   Raul Astudillo, et al.
15

We consider black-box global optimization of time-consuming-to-evaluate functions on behalf of a decision-maker whose preferences must be learned. Each feasible design is associated with a time-consuming-to-evaluate vector of attributes, each vector of attributes is assigned a utility by the decision-maker's utility function, and this utility function may be learned approximately using preferences expressed by the decision-maker over pairs of attribute vectors. Past work has used this estimated utility function as if it were error-free within single-objective optimization. However, errors in utility estimation may yield a poor suggested decision. Furthermore, this approach produces a single suggested "best" design, whereas decision-makers often prefer to choose among a menu of designs. We propose a novel Bayesian optimization algorithm that acknowledges the uncertainty in preference estimation and implicitly chooses designs to evaluate using the time-consuming function that are good not just for a single estimated utility function but a range of likely utility functions. Our algorithm then shows a menu of designs and evaluated attributes to the decision-maker who makes a final selection. We demonstrate the value of our algorithm in a variety of numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro