Bayesian Latent-Normal Inference for the Rank Sum Test, the Signed Rank Test, and Spearman's ρ

12/19/2017
by   Johnny van Doorn, et al.
0

Bayesian inference for rank-order problems is frustrated by the absence of an explicit likelihood function. This hurdle can be overcome by assuming a latent normal representation that is consistent with the ordinal information in the data: the observed ranks are conceptualized as an impoverished reflection of an underlying continuous scale, and inference concerns the parameters that govern the latent representation. We apply this generic data-augmentation method to obtain Bayesian counterparts of three popular rank-based tests: the rank sum test, the signed rank test, and Spearman's ρ.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro