Bayesian Estimation of the Degrees of Freedom Parameter of the Student-t Distribution—A Beneficial Re-parameterization

09/03/2021
by   Darjus Hosszejni, et al.
0

In this paper, conditional data augmentation (DA) is investigated for the degrees of freedom parameter ν of a Student-t distribution. Based on a restricted version of the expected augmented Fisher information, it is conjectured that the ancillarity DA is progressively more efficient for MCMC estimation than the sufficiency DA as ν increases; with the break even point lying at as low as ν≈4. The claim is examined further and generalized through a large simulation study and a application to U.S. macroeconomic time series. Finally, the ancillarity-sufficiency interweaving strategy is empirically shown to combine the benefits of both DAs. The proposed algorithm may set a new standard for estimating ν as part of any model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro