Automated non-mass enhancing lesion detection and segmentation in breast DCE-MRI

03/12/2018
by   Ignacio Alvarez Illan, et al.
0

Non-mass enhancing lesions (NME) constitute a diagnostic challenge in dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of the breast. Computer Aided Diagnosis (CAD) systems provide physicians with advanced tools for analysis, assessment and evaluation that have a significant impact on the diagnostic performance. Here, we propose a new approach for the specific problem of NME detection and segmentation, by taking advantage of independent component analysis (ICA) to extract a data-driven dynamic characterization of tissue. A set of independent sources was obtained from a dataset of patients, and the dynamic behavior of the different tissues was described by multiple dynamic curves, together with a set of eigenimages describing the scores for each voxel. A new test image is projected onto the independent source space using the unmixing matrix, and each voxel is classified by a support vector machine (SVM) that has already been trained with manually delineated data. A solution to the high false positive rate problem is proposed by controlling the SVM hyperplane location. The CAD system is trained and validated, reaching a DSC coefficient of 0.7215 for NME segmentation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro