Auto-Vectorizing TensorFlow Graphs: Jacobians, Auto-Batching And Beyond

03/08/2019
by   Ashish Agarwal, et al.
0

We propose a static loop vectorization optimization on top of high level dataflow IR used by frameworks like TensorFlow. A new statically vectorized parallel-for abstraction is provided on top of TensorFlow, and used for applications ranging from auto-batching and per-example gradients, to jacobian computation, optimized map functions and input pipeline optimization. We report huge speedups compared to both loop based implementations, as well as run-time batching adopted by the DyNet framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro