Augmenting Recurrent Neural Networks with High-Order User-Contextual Preference for Session-Based Recommendation

05/08/2018
by   Younghun Song, et al.
0

The recent adoption of recurrent neural networks (RNNs) for session modeling has yielded substantial performance gains compared to previous approaches. In terms of context-aware session modeling, however, the existing RNN-based models are limited in that they are not designed to explicitly model rich static user-side contexts (e.g., age, gender, location). Therefore, in this paper, we explore the utility of explicit user-side context modeling for RNN session models. Specifically, we propose an augmented RNN (ARNN) model that extracts high-order user-contextual preference using the product-based neural network (PNN) in order to augment any existing RNN session model. Evaluation results show that our proposed model outperforms the baseline RNN session model by a large margin when rich user-side contexts are available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro