Attentioned Convolutional LSTM InpaintingNetwork for Anomaly Detection in Videos

11/26/2018
by   Itamar Ben-Ari, et al.
0

We propose a semi-supervised model for detecting anomalies in videos inspiredby the Video Pixel Network [van den Oord et al., 2016]. VPN is a probabilisticgenerative model based on a deep neural network that estimates the discrete jointdistribution of raw pixels in video frames. Our model extends the Convolutional-LSTM video encoder part of the VPN with a novel convolutional based attentionmechanism. We also modify the Pixel-CNN decoder part of the VPN to a frameinpainting task where a partially masked version of the frame to predict is given asinput. The frame reconstruction error is used as an anomaly indicator. We test ourmodel on a modified version of the moving mnist dataset [Srivastava et al., 2015]. Our model is shown to be effective in detecting anomalies in videos. This approachcould be a component in applications requiring visual common sense.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro