Asynchronous Multi-Model Federated Learning over Wireless Networks: Theory, Modeling, and Optimization

05/22/2023
by   Zhan-Lun Chang, et al.
0

Federated learning (FL) has emerged as a key technique for distributed machine learning (ML). Most literature on FL has focused on systems with (i) ML model training for a single task/model, (ii) a synchronous setting for uplink/downlink transfer of model parameters, which is often unrealistic. To address this, we develop MA-FL, which considers FL with multiple downstream tasks to be trained over an asynchronous model transmission architecture. We first characterize the convergence of ML model training under MA-FL via introducing a family of scheduling tensors to capture the scheduling of devices. Our convergence analysis sheds light on the impact of resource allocation (e.g., the mini-batch size and number of gradient descent iterations), device scheduling, and individual model states (i.e., warmed vs. cold initialization) on the performance of ML models. We then formulate a non-convex mixed integer optimization problem for jointly configuring the resource allocation and device scheduling to strike an efficient trade-off between energy consumption and ML performance, which is solved via successive convex approximations. Through numerical simulations, we reveal the advantages of MA-FL in terms of model performance and network resource savings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro