Asymptotic theory in a class of directed random graph models with a differentially private bi-degree sequence

01/24/2022
by   Lu Pan, et al.
0

Although the asymptotic properties of the parameter estimator have been derived in the p_0 model for directed graphs with the differentially private bi-degree sequence, asymptotic theory in general models is still lacking. In this paper, we release the bi-degree sequence of directed graphs via the discrete Laplace mechanism, which satisfies differential privacy. We use the moment method to estimate the unknown model parameter. We establish a unified asymptotic result, in which consistency and asymptotic normality of the differentially private estimator holds. We apply the unified theoretical result to the Probit model. Simulations and a real data demonstrate our theoretical findings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro