Asymptotic Model Selection for Naive Bayesian Networks

12/12/2012
by   Dmitry Rusakov, et al.
0

We develop a closed form asymptotic formula to compute the marginal likelihood of data given a naive Bayesian network model with two hidden states and binary features. This formula deviates from the standard BIC score. Our work provides a concrete example that the BIC score is generally not valid for statistical models that belong to a stratified exponential family. This stands in contrast to linear and curved exponential families, where the BIC score has been proven to provide a correct approximation for the marginal likelihood.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro