Application of Variance-Based Sensitivity Analysis to a Large System Dynamics Model

03/28/2018
by   Daniel Inman, et al.
0

Variance-based sensitivity methods can provide insights into large computational models. We present a novel application of sensitivity analysis to the Biomass Scenario Model (BSM) a large and complex system dynamics model of the developing biofuels industry in the United States. We apply a two-stage sensitivity approach consisting of an initial sensitivity screening, followed by a variance decomposition approach. Identifying key system levers and quantifying their strength is not straightforward in complex system dynamics models that have numerous feedbacks and nonlinear results. Variance-based sensitivity analysis (VBSA) offers a systematic, global approach to assessing system dynamics models because it addresses nonlinear responses and interactive effects. Especially when a large model's size makes manual exploration of the input space difficult and time-consuming, the approach can help to provide a comprehensive understanding of interactions that drive model behaviors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro