Anticipating Traffic Accidents with Adaptive Loss and Large-scale Incident DB

04/08/2018
by   Tomoyuki Suzuki, et al.
0

In this paper, we propose a novel approach for traffic accident anticipation through (i) Adaptive Loss for Early Anticipation (AdaLEA) and (ii) a large-scale self-annotated incident database for anticipation. The proposed AdaLEA allows a model to gradually learn an earlier anticipation as training progresses. The loss function adaptively assigns penalty weights depending on how early the model can an- ticipate a traffic accident at each epoch. Additionally, we construct a Near-miss Incident DataBase for anticipation. This database contains an enormous number of traffic near- miss incident videos and annotations for detail evaluation of two tasks, risk anticipation and risk-factor anticipation. In our experimental results, we found our proposal achieved the highest scores for risk anticipation (+6.6 precision (mAP) and 2.36 sec earlier than previous work on the average time-to-collision (ATTC)) and risk-factor anticipation (+4.3 0.70 sec earlier than previous work on ATTC).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro