Analysis of Count-Min sketch under conservative update

03/29/2022
by   Éric Fusy, et al.
0

Count-Min sketch is a hash-based data structure to represent a dynamically changing associative array of counters. Here we analyse the counting version of Count-Min under a stronger update rule known as conservative update, assuming the uniform distribution of input keys. We show that the accuracy of conservative update strategy undergoes a phase transition, depending on the number of distinct keys in the input as a fraction of the size of the Count-Min array. We prove that below the threshold, the relative error is asymptotically o(1) (as opposed to the regular Count-Min strategy), whereas above the threshold, the relative error is Θ(1). The threshold corresponds to the peelability threshold of random k-uniform hypergraphs. We demonstrate that even for small number of keys, peelability of the underlying hypergraph is a crucial property to ensure the o(1) error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro