An Open-World Lottery Ticket for Out-of-Domain Intent Classification

10/13/2022
by   Yunhua Zhou, et al.
0

Most existing methods of Out-of-Domain (OOD) intent classification, which rely on extensive auxiliary OOD corpora or specific training paradigms, are underdeveloped in the underlying principle that the models should have differentiated confidence in In- and Out-of-domain intent. In this work, we demonstrate that calibrated subnetworks can be uncovered by pruning the (poor-calibrated) overparameterized model. Calibrated confidence provided by the subnetwork can better distinguish In- and Out-of-domain. Furthermore, we theoretically bring new insights into why temperature scaling can differentiate In- and Out-of-Domain intent and empirically extend the Lottery Ticket Hypothesis to the open-world setting. Extensive experiments on three real-world datasets demonstrate our approach can establish consistent improvements compared with a suite of competitive baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro