An Online Universal Classifier for Binary, Multi-class and Multi-label Classification

09/03/2016
by   Meng Joo Er, et al.
0

Classification involves the learning of the mapping function that associates input samples to corresponding target label. There are two major categories of classification problems: Single-label classification and Multi-label classification. Traditional binary and multi-class classifications are sub-categories of single-label classification. Several classifiers are developed for binary, multi-class and multi-label classification problems, but there are no classifiers available in the literature capable of performing all three types of classification. In this paper, a novel online universal classifier capable of performing all the three types of classification is proposed. Being a high speed online classifier, the proposed technique can be applied to streaming data applications. The performance of the developed classifier is evaluated using datasets from binary, multi-class and multi-label problems. The results obtained are compared with state-of-the-art techniques from each of the classification types.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro