An Integral Representation of the Logarithmic Function with Applications in Information Theory

12/12/2019
by   Neri Merhav, et al.
0

We explore a well-known integral representation of the logarithmic function, and demonstrate its usefulness in obtaining compact, easily-computable exact formulas for quantities that involve expectations and higher moments of the logarithm of a positive random variable (or the logarithm of a sum of such random variables). The integral representation of the logarithm is proved useful in a variety of information-theoretic applications, including universal lossless data compression, entropy and differential entropy evaluations, and the calculation of the ergodic capacity of the single-input, multiple-output (SIMO) Gaussian channel with random parameters (known to both transmitter and receiver). This integral representation and its variants are anticipated to serve as a useful tool in additional applications, as a rigorous alternative to the popular (but non-rigorous) replica method (at least in some situations).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro