An FPGA-Based On-Device Reinforcement Learning Approach using Online Sequential Learning

05/10/2020
by   Hirohisa Watanabe, et al.
20

DQN (Deep Q-Network) is a method to perform Q-learning for reinforcement learning using deep neural networks. DQNs require large buffers for experience reply and rely on backpropagation based iterative optimization, making them difficult to be implemented on resource-limited edge devices. In this paper, we propose a lightweight on-device reinforcement learning approach for low-cost FPGA devices. It exploits a recently proposed neural-network based on-device learning approach that does not rely on the backpropagation method but uses ELM (Extreme Learning Machine) and OS-ELM (Online Sequential ELM) based training algorithms. In addition, we propose a combination of L2 regularization and spectral normalization for the on-device reinforcement learning, so that output values of the neural networks can be fit into a certain range and the reinforcement learning becomes stable. The proposed reinforcement learning approach is designed for Xilinx PYNQ-Z1 board as a low-cost FPGA platform. The experiment results using OpenAI Gym demonstrate that the proposed algorithm and its FPGA implementation complete a CartPole-v0 task 29.76x and 126.06x faster than a conventional DQN-based approach when the number of hidden-layer nodes is 64.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro