An Evidential Real-Time Multi-Mode Fault Diagnosis Approach Based on Broad Learning System

04/29/2023
by   Chen Li, et al.
0

Fault diagnosis is a crucial area of research in the industry due to diverse operating conditions that exhibit non-Gaussian, multi-mode, and center-drift characteristics. Currently, data-driven approaches are the main focus in the field, but they pose challenges for continuous fault classification and parameter updates of fault classifiers, particularly in multiple operating modes and real-time settings. Therefore, a pressing issue is to achieve real-time multi-mode fault diagnosis for industrial systems. To address this problem, this paper proposes a novel approach that utilizes an evidence reasoning (ER) algorithm to fuse information and merge outputs from different base classifiers. These base classifiers are developed using a broad learning system (BLS) to improve good fault diagnosis performance. Moreover, in this approach, the pseudo-label learning method is employed to update model parameters in real-time. To demonstrate the effectiveness of the proposed approach, we perform experiments using the multi-mode Tennessee Eastman process dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro