An efficient decoder for a linear distance quantum LDPC code

06/14/2022
by   Shouzhen Gu, et al.
0

Recent developments have shown the existence of quantum low-density parity check (qLDPC) codes with constant rate and linear distance. A natural question concerns the efficient decodability of these codes. In this paper, we present a linear time decoder for the recent quantum Tanner codes construction of asymptotically good qLDPC codes, which can correct all errors of weight up to a constant fraction of the blocklength. Our decoder is an iterative algorithm which searches for corrections within constant-sized regions. At each step, the corrections are found by reducing a locally defined and efficiently computable cost function which serves as a proxy for the weight of the remaining error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro