An architecture for enabling A/B experiments in automotive embedded software

07/06/2021
by   Yuchu Liu, et al.
0

A/B experimentation is a known technique for data-driven product development and has demonstrated its value in web-facing businesses. With the digitalisation of the automotive industry, the focus in the industry is shifting towards software. For automotive embedded software to continuously improve, A/B experimentation is considered an important technique. However, the adoption of such a technique is not without challenge. In this paper, we present an architecture to enable A/B testing in automotive embedded software. The design addresses challenges that are unique to the automotive industry in a systematic fashion. Going from hypothesis to practice, our architecture was also applied in practice for running online experiments on a considerable scale. Furthermore, a case study approach was used to compare our proposal with state-of-practice in the automotive industry. We found our architecture design to be relevant and applicable in the efforts of adopting continuous A/B experiments in automotive embedded software.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro