An adaptive Euler-Maruyama scheme for McKean SDEs with super-linear growth and application to the mean-field FitzHugh-Nagumo model

05/12/2020
by   Christoph Reisinger, et al.
0

In this paper, we introduce a fully implementable, adaptive Euler-Maruyama scheme for McKean SDEs with non-globally Lipschitz continuous drifts. We prove moment stability of the discretised processes and a strong convergence rate of 1/2. We present several numerical examples centred around a mean-field model for FitzHugh-Nagumo neurons, which illustrate that the standard uniform scheme fails and that the adaptive scheme shows in most cases superior performance compared to tamed approximation schemes. In addition, we propose a tamed and an adaptive Milstein scheme for a certain class of McKean SDEs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro