Alternating Direction Method of Multipliers for Decomposable Saddle-Point Problems

09/09/2022
by   Mustafa O. Karabag, et al.
0

Saddle-point problems appear in various settings including machine learning, zero-sum stochastic games, and regression problems. We consider decomposable saddle-point problems and study an extension of the alternating direction method of multipliers to such saddle-point problems. Instead of solving the original saddle-point problem directly, this algorithm solves smaller saddle-point problems by exploiting the decomposable structure. We show the convergence of this algorithm for convex-concave saddle-point problems under a mild assumption. We also provide a sufficient condition for which the assumption holds. We demonstrate the convergence properties of the saddle-point alternating direction method of multipliers with numerical examples on a power allocation problem in communication channels and a network routing problem with adversarial costs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro