Algorithmic Thresholds for Refuting Random Polynomial Systems

10/16/2021
by   Jun-Ting Hsieh, et al.
0

Consider a system of m polynomial equations {p_i(x) = b_i}_i ≤ m of degree D≥ 2 in n-dimensional variable x ∈ℝ^n such that each coefficient of every p_i and b_is are chosen at random and independently from some continuous distribution. We study the basic question of determining the smallest m – the algorithmic threshold – for which efficient algorithms can find refutations (i.e. certificates of unsatisfiability) for such systems. This setting generalizes problems such as refuting random SAT instances, low-rank matrix sensing and certifying pseudo-randomness of Goldreich's candidate generators and generalizations. We show that for every d ∈ℕ, the (n+m)^O(d)-time canonical sum-of-squares (SoS) relaxation refutes such a system with high probability whenever m ≥ O(n) · (n/d)^D-1. We prove a lower bound in the restricted low-degree polynomial model of computation which suggests that this trade-off between SoS degree and the number of equations is nearly tight for all d. We also confirm the predictions of this lower bound in a limited setting by showing a lower bound on the canonical degree-4 sum-of-squares relaxation for refuting random quadratic polynomials. Together, our results provide evidence for an algorithmic threshold for the problem at m ≳O(n) · n^(1-δ)(D-1) for 2^n^δ-time algorithms for all δ.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro